TeamDrive
RUS

Researchers unveiled the first bio-electronic medicine

15 October 2018

GMP News

Researchers at Northwestern University (Chicago, USA) and Washington University School of Medicine (St. Louis, USA) have developed the first example of a bioresorbable electronic medicine: an implantable, biodegradable wireless device that speeds nerve regeneration and improves the healing of a damaged nerve.

The collaborators — materials scientists and engineers at Northwestern and neurosurgeons at Washington University — developed a device that delivers regular pulses of electricity to damaged peripheral nerves in rats after a surgical repair process, accelerating the regrowth of nerves in their legs and enhancing the ultimate recovery of muscle strength and control. The size of a dime and the thickness of a sheet of paper, the wireless device operates for about two weeks before naturally absorbing into the body.

The scientists envision that such transient engineered technologies one day could complement or replace pharmaceutical treatments for a variety of medical conditions in humans. This type of technology, which the researchers refer to as a “bioresorbable electronic medicine” provides therapy and treatment over a clinically relevant period of time and directly at the site where it’s needed, thereby reducing side effects or risks associated with conventional, permanent implants.

John A. Rogers, a pioneer in bio-integrated technologies and a co-senior author of the study commented:

“These engineered systems provide active, therapeutic function in a programmable, dosed format and then naturally disappear into the body, without a trace. This approach to therapy allows one to think about options that go beyond drugs and chemistry.”

While the device has not been tested in humans, the findings offer promise as a future therapeutic option for nerve injury patients. For cases requiring surgery, standard practice is to administer some electrical stimulation during the surgery to aid recovery. But until now, doctors have lacked a means to continuously provide that added boost at various time points throughout the recovery and healing process.

The research study also showed the device can work as a temporary pacemaker and as an interface to the spinal cord and other stimulation sites across the body. These findings suggest broad utility, beyond just the peripheral nervous system.

Source


Previous publication Next publication

Media Center

  • 31 October 2018

    Scientists unveiled a more effective approach for assessing drug response

    Scientists from Eli Lilly and Company, the Icahn School of Medicine at Mount Sinai (New York, USA) and Sema4 (Stamford, USA) released results from a proof-of-concept study demonstrating that patient-derived cells offer a more effective approach for assessing drug response than conventional methods.

  • 30 October 2018

    Researchers developed an AI approach to identify antibiotic resistance genes

    Researchers at the University of California San Diego (USA) have developed an approach that uses machine learning to identify and predict which genes make infectious bacteria resistant to antibiotics. The approach was tested on strains of Mycobacterium tuberculosis – the bacteria that cause tuberculosis (TB) in humans. It identified 33 known and 24 new antibiotic resistance genes in these bacteria.

  • 29 October 2018

    Expanding the reach of gene editing with a new CRISPR enzyme

    The CRISPR-Cas9 gene editing system has been widely studied because of its potential therapeutic applications, but limitations in the number of locations on the genome it can target remain a major drawback. Now scientists at the Massachusetts Institute of Technology have identified a new Cas9 enzyme that they say can help CRISPR reach more gene mutations.

  • 26 October 2018

    Biotech Backed by Bain, Pfizer loads prime CNS assets into new biotech

    Pfizer has followed through on its pledge to divest a hunk of its neuroscience R&D, spinning several programs into a new company called Cerevel Therapeutics backed by $350 million in venture funding. Pfizer is contributing a trio of clinical-stage drug candidates—including a Parkinson’s therapy due to start phase 3 testing next year—plus a clutch of earlier-stage programs, while Bain Capital and affiliates stumped up the initial funding.

Read more